产品中心
推荐新闻
热门新闻
2060铝锂合金光纤激光填丝焊接工艺研究
2060-T8铝锂合金是具有低密度、高比强度,及精采低温机能的新型轻量化航空质料。回收光纤激光器并填充5087(Al-Mg-Zr)焊丝焊接2 mm厚2060-T8铝锂合金,研究了工艺参数对焊接讨论热裂纹敏感性的影响,阐明白焊接讨论的显微组织及力学机能。研究功效表白,结晶裂纹敏感性随激光功率和焊接速度的增加而增加,随送丝速度的增加而低落。在激光功率为3 kW、焊接速度和送丝速度为3 m/min的工艺参数下讨论成形精采,无焊接裂纹,焊接讨论的平均抗拉强度为309 MPa,断裂产生在焊缝区。同焊缝上部及下部对比,MG游戏平台,焊缝腰部熔合线四周细晶区等轴晶数量较多且柱状晶明明细化,这与熔池活念头制与界线层厚度有关。
要害词
Abstract
2060-T8 Al-Li alloy is a new aircraft material with low density, high specific strength and well properties in low temperature conditions. 2060-T8 Al-Li alloy in 2 mm thick is welded by fiber laser with 5087 (Al-Mg-Zr) filler wire. The cracking susceptibility of joints obtained under different welding parameters is investigated. The microstructure and mechanical properties are analyzed as well. The result indicates that, a higher laser power or a larger welding speed causes the increase of crack number, and a lower wire feeding rate results in a higher cracking susceptibility. Under the condition of 3 kW laser power, 3 m/min welding speed and 3 m/min wire feeding rate, the weld with great formation and few welding defects are obtained. The average tensile strength of joints reaches to 309 MPa, and the tensile fractures occur in the weld zone. At the waist of weld, the fine equiaxed grains are in larger quantities and the columnar crystals are more refined than the upside and downside near the fusion line, which resultes from the mode of fluid flow in weld pool and the thickness of the boundary-layer.
中图分类号:TN249;TG456.7
DOI:10.3788/cjl201441.1003009
所属栏目:激光制造
基金项目:国度自然科学基金(51175008)
收稿日期:2014-04-21
修改稿日期:2014-05-18
网络出书日期:--
作者单元 点击查察
安娜:北京家产大学激光工程研究院, 北京 100124
张心怡:北京家产大学激光工程研究院, 北京 100124
王启明:北京家产大学激光工程研究院, 北京 100124
杨武雄:北京家产大学激光工程研究院, 北京 100124
肖荣诗:北京家产大学激光工程研究院, 北京 100124
接洽人作者:安娜(annaanna@emails.bjut.edu.cn)
备注:安娜(1990—),女,硕士研究生,主要从事铝锂合金激光加工方面的研究。
【1】P K Gupta, N Nayan, G Nagasireesha. Development and characterization of Al-Li alloys[J]. Materials Science and Engineering A, 2006, A420(1-2): 228-234.
【2】Wang Haojun, Shi Chunling, Jia Zhiqiang, et al.. Development and current status of aluminum-lithium alloy[J]. Hot Working Technology, 2012, 41(14): 82-85.
王浩军, 史春玲, 贾志强, 等. 铝锂合金的成长及研究近况[J]. 热加工工艺, 2012, 41(14): 82-85.
【3】R Muzzolini, M Niedzinski, H Ribes, et al.. FEA optimizes airframe panels[J]. Advanced Materials Processes, 2005, 163(11): 37-39.
【4】F Vollertsen, J Schumacher, K Schneider, et al.. Innovative welding strategies for the manufacture of large aircraft[J]. Welding Research Abroad, 2005, 51(2): 1-17.
【5】Zuo Tiechuan, Xiao Rongshi, Chen Kai, et al.. Laser Materials Processing of High Strength Aluminum Alloys[M]. Beijing: National Defense Industry Press, 2002. 53-63.
左铁钏, 肖荣诗, 陈铠, 等. 高强铝合金的激光加工[M]. 北京: 国防家产出书社, 2002. 53-63.
【6】Rongshi Xiao, Xinyi Zhang. Problems and issues in laser beam welding of aluminum-lithium alloys[J]. Journal of Manufacturing Processes, 2014, 16(2): 166-175.
【7】G D Janaki Ram, T K Mitra, M K Rajuc, et al.. Use of inoculants to refine weld solidification structure and improve weldability in type 2090 Al-Li alloy[J]. Materials Science and Engineering, 2000, A276(1-2): 48-57.
【8】A Kostrivas, J C Lippold. Weldability of Li-bearing aluminium alloys[J]. International Materials Reviews, 1999, 44(6): 217-237.
【9】Xu Fei, Chen Li, Gong Shuili, et al.. Microstructure and mechanical properties of Al-Li alloy by laser welding with filler wire[J]. Rare Metal Materials and Engineering, 2011, 10, 40(10): 1775-1779.
许飞, 陈俐, 巩水利, 等. 铝锂合金激光填丝焊接讨论组织机能研究[J]. 罕有金属质料与工程, 2011, 10, 40(10): 1775-1779.
【10】T Fuhrich, P Berger, H Hügel. Marangoni effect in laser deep penetration welding of steel[J]. Journal of Laser Applications, 2001, 13(5): 178-186.
【11】N Postacioglu, P Kapadia, J Dowden. A theoretical model of themocapillary flows in laser welding[J]. Appl Phys, 1991, 24(1): 15-20.
总机:01082311258 客服电话:15652006009 传真:010-82631685/82311256
Copyright © 2019 MG游戏铝业有限公司 All rights reserved
站点地图